CHEM 3523 001 Spring 2023

Name: ID: KEY

Midterm Exam #1

Answer Sheet: (The conceptual questions are multiple choice. List the letter that corresponds to the correct answer. For the calculation problems list under <u>a) the final equation</u> that gives the solution. Use only symbols, not intermediate numerical results. List under <u>b) the final numerical result</u>. Make no mistakes when transferring the answers! Put your names on **both** answer sheets **and** the work pages, and **return all pages!** Conceptual questions are **0.5 pts** each, calculation problems **3+1 pts**. Maximum number of points you can get is **25 pts**!

General Infos:

- No programable calculators, smartphones, smartwatches, tablets, headphones, ... are allowed. Neither any notes or books.
- Any attempt of cheating or other forms of academic dishonesty will result in an automatic "F" for the course.
- Show a picture ID when leaving
- **Be considerate if you finish early**. Consider to stay till end, or at least be quite when leaving earlier to avoid distracting your fellow students!

<u>Conceptual</u>	<u>Problems & </u>
questions:	<u>Calculations:</u>
1)	12) Messale = K= Wsolute . AFT
2) <u>a</u>	1a) Msseyle KE WHO AFT
3) <u>6</u>	1b) 0.0142 Kylanol
4) <u>b</u>	mg (1 1) M
5) <u> </u>	2a) MR MA THE XB
6) <u>a</u>	2b) <u>(), () 55 (5) [mol</u>
7) 9	77-
8)	3a)
9)	3b) 5.16 × 10-5 mole
10)	1 K
	4a) ~ = 1. ((1, (C+1, Coo) + 1, (+1)
	4b) 2.5% (a)
	5a) [5n24]"= exp{-(E-to+In[c"]").2 = 5
	5b) 4.1 ×10 5

CHEM 3523 001 Spring 2023

Name: ID: KEY

Conceptual Ouestions:

1.	How many	different phases of	an at most co-exist in a	two-component system?
----	----------	---------------------	--------------------------	-----------------------

- a. 1
- b. 2
- c. 3
- **d.** 4
- é. !
- f. none of a) e)

2. At triple point what is the thermodynamic quantity that is the same for each component in all three phases?

- (a.)Chemical potential μ
 - b. Entropy S
- c. Enthalpy H
- d. Internal energy U
- e. Concentration c
- f. None of a(a) e(a)

3. When adding 1 mol of water to a large beaker filled with pure ethanol, the volume increases by 14 ml. What is the partial molar volume of water in ethanol?

- a. 12 ml
- (6.) 14 ml
- c. 16 ml
- d. 18 ml
- e. 20 ml
- f. 28 ml

4. The osmotic pressure of a solution

- a. Decreases with increasing solute concentration
- (b.) Increases with increasing solute concentration

5. When mixing ideal solutions, which quantity increases?

- a. Mixing Gibbs free energy Δ_{mix} G
- b. Mixing enthalpy Δ_{mix} H
- $\overline{\text{c.}}$ Mixing entropy Δ_{mix} S

Ag+ ior a b.	dding NaCl to a 0.01 M aqueous so	white of ACNO, the concentration of
C.	Increases Decreases Does not change	nution of AGNO3, the concentration of
a. (b)	ncentration dependence of the mo Strong electrolytes Weak electrolytes Similar for all electrolytes	olar conductivity Λ is stronger for
a.	rection of the Nernst potential of a The same as that of the concentra Opposite to the concentration gra Independent of the concentration	ation gradient adient
produ a. b.	er to maximize the emf of an elect ets should be High compared to that of the read Equal to that of the reactants Low compared to that of the read	

6. Which kind of electrolyte can be described already quite good with the

Problems and Calculations:

1. When 10 g of a nonvolatile solute is dissolved in 500.0 g of water, the freezing point depression is **2**.5 K. Calculate the molar mass (in kg/mol) of the compound assuming a freezing point depression coefficient $K_f = 1.78 \text{ K*kg/mol}$. Use that the molality $m=n/W_{solvent}=W_{solute}/(M_{Solute} *W_{solvent})$ with W the total mass of solute/solvent and M the molar mass.

 $A_{p}T = K_{p} \cdot m_{solute}$ $= K_{p} \cdot \frac{W_{solute}}{M_{solute}} \cdot W_{H_{p}} 0$ $= N_{solute} \cdot K_{p} \cdot \frac{W_{solute}}{W_{H_{2}0}} \cdot A_{p}T$ $= 1.78 \cdot K_{p} \cdot \frac{100}{100} \cdot \frac{1}{2.5}K$ $= 0.0142 \cdot \frac{K_{p}}{mol}$

2. When 15 g of the nonvolatile component B is dissolved in 500 g of A, the vapor pressure of the pure solvent, 7.50 kPa, is reduced to 7.30 kPa. Calculate the molar mass of compound B if that of compound A is 50 g/mol. Hint: assume that $n_A >> n_B$

$$= \frac{1}{\chi_B} - 1 = \frac{m_a}{m_A} \frac{M_B}{m_B}$$

3. When 50 mg of a polymer are dissolved in a certain amount of water at 25°C, the osmotic pressure of the solution is found to be 50 Pa. What is the concentration of polymer (in mol/dm³) in the solution?

TT = CRT =>

4. The electrolytic conductivity of a 0.0312 M solution of acetic acid is 1.83×10^{-4} S/cm. If the limiting ionic conductance (infinite dilution) for CH₃COO⁻¹ is 100 S*cm²/mol, and 137 S*cm²/mol for H⁺, what is the degree of dissociation α ?

10 = 10 (CH3 (00-) + 10 (H1) = 237 = 30002

1.33×10 500 1.33×10 500 500 3.12×10 5000

= 5.365 Semi

 $\alpha: \frac{\Lambda}{\Lambda_0} : \frac{\kappa}{c(\Lambda_0(cH_3(00)) + \Lambda_0(H'))}$

= 5.865 = 0.02428 = 2.5%

5. Given that $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E_1^0 = +0.3419 \text{ V}$ $Sn^{2+} + 2e^{-} \rightarrow Sn$ $E_2^0 = -0.1375 \text{ V}$,

Determine the concentration of Sn²⁺ used in the electrochemical cell

 $Sn(s) | Sn^{2+}(aq) | | Cu^{2+}(1.0 m) | Cu(s)$

that leads to an emf of E=0.55 V at 298.15 K. Note that the concentrations of metallic Sn and Cu do not change and that you know the concentration $[Cu^{2+}]=1.0$ m. Standard concentration is 1.0 m.

 $E^{\circ} \cdot E^{\circ} \cdot E^{\circ} \cdot E^{\circ} = 0.47940$ $E^{\circ} \cdot E^{\circ} \cdot E^$

- 411 8 16 -3