Under standard conditions, a solution containing A and its reduced form AH₂ has a standard electrode potential of -0.6 V. A solution containing B and BH₂ has a standard potential of -0.16 V. If a cell were constructed with these two systems as half-cells, would AH₂ be oxidized by B or BH₂ oxidized by A? What would be the reversible emf of the cell?

A + 24+ + 2e -> AHZ E= -0.60V } => AHZ + B => A+BHZ
B + 2H+ + Ze -> BHZ E= -0.16V } AHZ is oxidized by B

reversible enfolce(c: -0.16V-(-0.6V): 0.44V

 The solubility of AgCl in water at 25 °C is 1.274 × 10⁻⁵ mol dm⁻³. On the assumption that the Debye-Hückel limiting law applies,

Calculate ΔG° for the process AgCl(s) → Ag+(aq) + Cl-(aq).

b. Calculate the solubility of AgCl in an 0.005 M solution of K2SO4.

 $I = \frac{1}{2} \sum_{i=1}^{2} C_{i} \sum_{i=1}^{2} \left(0.005 \text{ M} \times I^{2} + 0.005 \text{ M} \times I^{2} + 0.005 \text{ M} \times I^{2} \right) = 0.005 \text{ M}$ $log_{10} \gamma_{4} = \sum_{i=1}^{2} \left[\sum_{i=1}^{2} \sqrt{I_{im}} \cdot \beta \right] + 0.51 - 1 \cdot 1 - \sqrt{0.005} \left[\sum_{i=1}^{2} -0.0625 \right]$ $\Rightarrow \gamma_{4} = 0.866 \quad \text{f.} \quad K_{5} = const = 1.609 \times 10^{-14} \left((-on 4) \right) = 5 \text{ M}$ $\Rightarrow 5 = \frac{\sqrt{K_{5}}}{\sqrt{2}} \Rightarrow \frac{\sqrt{1.601 \times 10^{-14}}}{0.866} = 1.46 \times 10^{-5} \text{ M}$ 3. A 0.1 M solution of sodium palmitate, $C_{15}H_{31}COONa$, is separated from a 0.2

3. A 0.1 M solution of sodium palmitate, C₁₅H₃₁COONa, is separated from a 0.2 M solution of sodium chloride by a membrane that is permeable to Na⁺ and Cl⁻ ions but not to palmitate ions. Calculate the concentrations of Na⁺ and Cl⁻ ions on the two sides of the membrane after equilibrium has become established.

established. Palmitete side offer side $[N_0 + J = 0.1M]$ $[N_0 + J = 0.2M]$ $[N_0 + J = 0.2M]$ $[P^-J = 0.1M]$ $[C_0, J] = 0.2M$

[Na+] = 0.2M - X [Na+] = 0.2M - X [Na+] = 0.2M - X [CL-] = 6.2M - X

=> (6.2M-x)2 = (6.1 +x) x => x = 0.08 => Palmitate side: [Not] =0.18M, [CR] = 0.08M; other side: [Not]=[A]=[A]=0.18M