ID:
Worksheet \# 6 (Total number of points you can get is $\mathbf{3} \mathbf{p t s}$)

1. Assume adiabatic reversible compression of 1 mol of an ideal gas from $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right)$ to $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)$. (Draw P-V diagram!)
a. Does the temperature T increase or decrease? Why?

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{2-1} ; \quad V_{1}>V_{2} \text { and } \mu>1=T_{2}>T_{1}
$$

b. Write down the reversible work in terms of heat capacity and temperature.

$$
W_{r e v}=\Delta L_{t}-Q=\Delta U=C_{v}\left(T_{2}-t_{1}\right)
$$

c. Compare with reversible isothermal compression from the same starting conditions ($\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}$) to a new state $\left(\mathrm{P}_{2}{ }^{*}, \mathrm{~V}_{2}, \mathrm{~T}_{1}\right)$. Is $\mathrm{P}_{2}{ }^{*}$ larger or smaller than P_{2} ? Why?

$$
\left.\begin{array}{rl}
\text { isothermal: } p_{1} V_{1} & =p_{2}^{*} V_{2} \\
\text { adiabatic: } p_{i} V_{1}^{*} & =p_{2} V_{2}^{\gamma}
\end{array}\right\} \begin{aligned}
& p_{2}^{*}=p_{2}\left(\frac{V_{2}}{V_{1}}\right)^{2-1} \\
& \nu>1, V_{2}<V_{1} \Rightarrow p_{2}^{*}<p_{2}
\end{aligned}
$$

2. One mol of an ideal gas is reversibly expanded at constant temperature until $V_{2}=3 V_{1}$. If the gas performed 3 kJ of work, what is its temperature?

$$
\begin{aligned}
W=R T \ln \frac{V_{1}}{V_{2}}=> & =\frac{W}{R \ln \frac{V_{1}}{V_{2}}} \\
& =\frac{-3 \cdot 10^{3} \mathrm{Z}}{-8.3145 \mathrm{z} \cdot \ln 3} \\
& =\frac{3.103}{8.3145-1.099}=328.4 \mathrm{~F}
\end{aligned}
$$

3. Why is the energetics of chemical reactions often described by enthalpy differences ΔH, instead of internal energy differences ΔU ?
Experimental condition is usanally $P=$ cost
