CHEM 3423001 Spring 2024

Name:
ID:

Worksheet \# 5 (Total number of points you can get is 3 pts)

1. At what temperature T and pressure P will H_{2} bein a corresponding state with CH_{3} at 600 K and 2.5 bar pressure? The critical temperatures are $\mathrm{\Gamma}_{\mathrm{c}}{ }^{\circ}=$ 33.2 K for H_{2} and $\mathrm{T}_{c}=190.6 \mathrm{~K}$ for CH_{4}; the critical pressures $\mathrm{P}_{c}=13.0$ bar for H_{2} and $\mathrm{P}_{\mathrm{c}}=46.0$ bar for ClH_{4}.

$$
\begin{aligned}
& p_{R}=\frac{P}{P_{C}}=\frac{2.5}{46.0}-0.05 c \Rightarrow P_{p_{2}}=P_{R} \cdot P_{i}=0702 \mathrm{han} \\
& T_{R}=\frac{T}{T_{C}}=\frac{600}{180.6} \therefore 3.148 \Rightarrow T_{R}=T_{R} \cdot T_{c}=104.5212
\end{aligned}
$$

1. In an open beaker at 400 K and 1 bar pressure, 1 mol of zinc are caused to react with dilute sulfuric acid: $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \Rightarrow \mathrm{HnSO}_{4}+\mathrm{H}_{2}$. Calculate the work done by the produced hydrogen gas, assuming it behaves as an ideal gas and $\Gamma=$ constr. $P=$ cont.

$$
\begin{aligned}
W=-P \Delta V & =-\Delta n_{h} \cdot R T \quad(P V=A R T) \\
& =-1 m 0 l \cdot 8 \cdot 3145 \frac{I}{K \cdot m a t} \cdot 400 K \\
& =-3325 \cdot 8 \text { Z }
\end{aligned}
$$

2. n mole of gas N_{z} occupy a volume of $V_{1}=1.00 \mathrm{I}$ at temperature $\mathrm{T}_{1}=200 \mathrm{~K}$ and pressure $P_{1}=1000 \mathrm{KPa}$. Determine the volume V_{2} of the same amount n of N_{2} at $\Gamma_{2}=400 \mathrm{~K}$ and $\mathrm{P}_{2}=250 \mathrm{kPa}$. The compressibility factor for N_{2} is $\mathrm{Z}_{1}=2.0$ at $T_{1}=200 \mathrm{~K}$ and $P_{2}=1000 \mathrm{KPa}$; and $\iota_{2}=1.0$ at $T_{2}=400 \mathrm{~K}$ and $\mathrm{P}_{2}=250 \mathrm{KPa}$

$$
\left.\begin{array}{rl}
Z_{1}=\frac{P_{1} V_{1}}{n R T_{1}} & \Rightarrow n=\frac{P_{1} V_{1}}{Z_{1} R T} \\
Z_{2}=\frac{P_{2} V_{2}}{n R T_{2}} & \Rightarrow V_{2}=\frac{z_{2} n R T_{2}}{P_{2}}
\end{array}\right\} \begin{aligned}
V_{2} & =\frac{z_{2} \frac{T_{2}}{Z_{1}} \frac{P_{1}}{T_{1}} V_{2}}{P_{1}} \\
& =\frac{10 \cdot 400 \cdot 1000 \cdot 10^{\circ}}{2.0 .200 \cdot 250.10^{3}} \cdot 1.0 \ell \\
& =4.02
\end{aligned}
$$

