

KEY

Worksheet # 3 (Total number of points you can get is 3 pts)

1. Hydrogen gas has a molecular collision diameter of 0.258 nm. Calculate the mean free path of hydrogen at 300 K and 200 kPa. ($k_B = R/L = 1.381 \times 10^{-23}$ J/K)

$$\lambda = \frac{V}{\sqrt{2} \pi d_A^2 N} \quad , \quad \frac{V}{N} = \frac{RT}{LP} \Rightarrow \lambda = \frac{RT}{\sqrt{2} \pi L P d_A^2} \\ \approx 7.00 \cdot 10^{-8} \text{ m}$$

2. Suppose we have a gas consisting of molecules A. The temperature is raised from T_1 to $T_2 = 2T_1$. What is the relationship between collision frequencies z_A at T_1 and z_A at T_2 ?

$$z_A = \frac{\sqrt{2} \pi d_A^2 N_A}{V} \bar{u}_A \quad \text{Text} \quad \bar{u}_A = \sqrt{\frac{3k_B T}{\pi m}} \Rightarrow u_A(T_2) = \sqrt{2} u_A(T_1)$$

$$\Rightarrow z_A(T_2) = \sqrt{2} z_A(T_1)$$

3. For H₂ gas at 400 K, calculate the ratio of the fraction of molecules that have the speed $u_2 = 2 u_1$ to the fraction that have speed u_1 . Assume that $u_1 = \bar{u}$ (the average speed of molecules at this temperature).

$$\frac{N(u_2)}{N} = 4 \exp\left(-\frac{m}{2k_B T} (u_2^2 - u_1^2)\right) = 4 \exp\left(-\frac{m}{2k_B T} (4-1)u_1^2\right)$$

$$\frac{N(u_2)}{N(u_1)} = \frac{u_2^2}{u_1^2} \exp\left(-\frac{m}{2k_B T} (u_2^2 - u_1^2)\right) = 4 \exp\left(-3 \frac{m}{2k_B T} u_1^2\right) \\ = 4 \exp\left(-3 \frac{m}{2k_B T} \cdot \frac{3k_B T}{\pi m}\right) = 4 \exp\left(-\frac{12}{\pi}\right) \approx 0.088$$