Name:
ID:

Worksheet \#2 (Total number of points you can get is $\mathbf{3} \mathbf{~ p t s}$)

1. Suppose we have three containers, filled with three types of gas, $\mathrm{H}_{2}, \mathrm{~N}_{2}$, and O_{2}, but you do not know which container is filled with which gas. Pressure P and total mass m of the included gas are the same in each container. Measuring volume V and temperature T allows you to draw the following graph:

$$
\begin{aligned}
P V= & n R T \Rightarrow V=\frac{n R}{p} T=\frac{1}{M} \frac{m R}{P} T \\
\frac{1}{M_{1}}> & \frac{1}{M_{2}}>\frac{1}{M_{3}} \Rightarrow M_{3}>M_{2}>M_{1} \\
= & \text { gas } 1=H_{2} \\
& \text { gas } 2: N_{2} \\
& \text { of as } 3: O_{2}
\end{aligned}
$$

Find out the type $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}\right.$, or O_{2}) of gas 1,2 , and 3. Hint: Use what you know about the relation between the molar masses M of the three gases.
2. An ideal gas occupies a volume V of $0.75 \mathrm{dm}^{3}$ at a pressure P of $3.0 \times 10^{5} \mathrm{~Pa}$. What is the new volume of the gas maintained at the same temperature T if the pressure P is reduced to $1.0 \times 10^{5} \mathrm{~Pa}$?

$$
\begin{aligned}
& P_{V}=n R+\quad V=n R T \frac{1}{P} \\
& P_{\text {new }}=\frac{1}{3} P_{\text {old }} \Rightarrow V_{\text {new }}=3 \mathrm{~V}_{\text {old }}=2.25 \mathrm{dm}^{3}
\end{aligned}
$$

3. A certain substance, used as a manometer fluid, has a density of 1.047 $\mathrm{g} / \mathrm{cm}^{3}$. What pressure P will lead to a column of $4.0 \mathrm{~mm} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\begin{aligned}
p=p q h & =\frac{1.047 \cdot 10^{-3} k_{y}}{10^{-6} \mathrm{~m}^{3}} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 4.0 \cdot 10^{-3} \mathrm{~m} \\
& =1.047 \cdot 9.8 \cdot 4.0 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& =41.04 \mathrm{pa}_{a}
\end{aligned}
$$

