

WS# 1 (Total number of points you can get is 3 pts)

1. (1 pt) Suppose we have three containers, filled with three types of gas, H_2 , N_2 , and O_2 , but you do not know which container is filled with which gas. Pressure P and total mass m of the included gas are the same in each container. Measuring volume V and temperature T allows you to draw the following graph:

$$PV = nRT \Rightarrow V = \frac{nR}{P}T = \frac{1}{M} \frac{mR}{P}T$$

$$\frac{1}{M_1} > \frac{1}{M_2} > \frac{1}{M_3} \Rightarrow M_3 > M_2 > M_1$$

$$\Rightarrow \text{gas 1} = H_2$$

$$\text{gas 2} = N_2$$

$$\text{gas 3} = O_2$$

Find out the type (H_2 , N_2 , or O_2) of gas 1, 2, and 3. Explain. Hint: Use what you know about the relation between the molar masses M of the three gases.

2.(1 pt) A gas that behaves ideally has a density ρ of 6.0 g dm^{-3} at pressure $P = 300 \text{ kPa}$ and $T = 150 \text{ K}$. What is its molar mass M ?

$$PV = nRT \Rightarrow \frac{m}{M}RT = \frac{m}{V} \frac{RT}{P} = \frac{\rho RT}{P}$$

$$= \frac{6.0 \cdot 10^{-3} \text{ kg}}{10^{-3} \text{ m}^3} \cdot \frac{8.3143 \cdot 150}{300 \cdot 10^3}$$

$$= 24.94 \cdot 10^{-3} \frac{\text{kg}}{\text{m}^3} \cdot \frac{1 \text{ K}}{\text{K} \cdot \text{mol} \cdot \text{Pa}}$$

$$= 24.94 \frac{\text{g}}{\text{mol}}$$

3. (1 pt) A certain substance, used as a manometer fluid, has a density of 1.047 g/cm^3 . What pressure P will lead to a column of 3.0 mm ? ($g = 9.8 \text{ m/s}^2$)

$$P = \rho \cdot g \cdot h = \frac{1.047 \cdot 10^{-3} \text{ kg}}{10^{-6} \text{ m}^3} \cdot 9.8 \frac{\text{m}}{\text{s}^2} \cdot 3.0 \cdot 10^{-3} \text{ m}$$

$$= 1.047 \cdot 9.8 \cdot 3.0 \frac{\text{N}}{\text{m}^2}$$

$$= 30.78 \text{ Pa}$$