Name:

ID:
Worksheet \# 12 (Total number of points you can get is 3 pts)

1. An ideal solution of 3 mol of A and 2 mol of B is at 300 K in equilibrium with vapor. At this temperature, $P_{A}=2.5$ bar and $P_{B}=3.0$ bar. What is the mass percentage of A in the vapor phase? (molar Mass of $A(B): M_{A}=50 \mathrm{~g} / \mathrm{mol} ; \mathrm{M}_{B}=$

$$
\begin{aligned}
& 10 \text { g/mold } x_{A} \cdot \frac{x_{B}}{3+2}, \frac{2}{3+2} ; \frac{x_{A}}{x_{B}}=\frac{3}{2}(\ln \text { Diquel) }
\end{aligned}
$$

2. At $\mathrm{T}-3.30 \mathrm{~K}$ a liquid solution of 0.5 mol fraction of A and 0.5 mol fraction of is in equilibrium with vapor. A and B are miscible and the vapor pressure of the solution is 1 bar. The composition of the vapor is 0.65 mol fraction of A and 0.35 mol fraction of B. What would be the vapor pressures $\mathrm{P}^{*}{ }_{A}$ and P_{B} of the pure components Λ and B at this temperature?

$$
\begin{aligned}
& y_{i}=\frac{P_{R}}{\rho} \cdot \frac{x_{1} \omega_{A}}{p}=>p_{A}^{\infty} \cdot p \frac{y_{A}}{x_{A}}-1.3 \operatorname{sen} \\
& \rho_{B}^{x}=p \frac{x_{B}}{x_{B}} \quad 0.7 \text { ar }
\end{aligned}
$$

3. The ratio of a component A to water collected in a steam distillation is 4 , when the mixture was boiled at 344 K and 80 kPa . If the vapor pressure of water at this temperature is 43.2 kPa , calculate the molar mass of A (molar mass of water: $18.02 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
& m=n \cdot M \\
& \left.\frac{m_{A}}{m_{H_{2} O}}=\frac{n_{4} \mu_{A}}{n_{H_{2} O} M_{H_{2} O}}=\frac{p_{A}^{*}}{p_{H_{2} O}^{*}} \frac{M_{A}}{M_{H_{2} O}} \right\rvert\, \begin{array}{l}
P=p_{A}^{*}+P_{H_{2} 0}^{*} \\
\Rightarrow P_{A}^{*}=P-P_{M_{2} 0}^{*}
\end{array} \\
& \Rightarrow M_{A}=\frac{P_{H_{2} \mathrm{O}}^{*}}{P_{A}^{*}} \cdot \frac{m_{A}}{m_{H_{1} \mathrm{O}}} \cdot \mu_{\mu_{2} \mathrm{O}}=\frac{P_{H_{2} \mathrm{O}}^{*}}{P-P_{H_{2} \mathrm{O}}^{*}} \frac{m_{A}}{m_{H_{2} \mathrm{O}}} \cdot M_{\mu_{2} \mathrm{O}} \\
& =\frac{43.2}{80-43.2} \cdot 4.18 .02 \frac{\mathrm{q}}{\mathrm{~mol}} \\
& =1.173^{9} \cdot 4.18 .62 \mathrm{~g} / \mathrm{md}=84.62 \mathrm{~m} / \mathrm{md}
\end{aligned}
$$

