Study Guide

Chapter 1

- 1) Definition of pressure
- 2) Pressure due to Hg column $P = \rho gh$
- 3) Ideal gas law PV=nRT
- 4) Kinetic theory of gas

$$E_k = \frac{3}{2}nRT$$
 or $\varepsilon_k = \frac{3}{2}k_BT$ for monoatomic gas

5) Rate of effusion

$$\bar{v} \approx \frac{1}{\sqrt{\rho}} \text{ or } \bar{v} \approx \frac{1}{\sqrt{M}}$$

6) Molecular collision

$$\lambda = \frac{\bar{v}_A}{Z_A}$$
 Mean free path; Given collision diameter, find λ

What is \bar{v}_A , Z_A given above eqn.?

7)
$$P=P_0 e^{\frac{-mg}{RT}Z} = P_0 e^{\frac{-E_p}{RT}}$$

- 8) Maxwell distribution: Distribution shape for different T/Gases
- 9) Real gas $Z = \frac{PV_m}{RT} \neq 1$
- 10) What is T_c? Shape of isotherms above/below T_c?

11) vdW eqn.
$$(P + \frac{a}{v_m^2}) (v_m - b) = RT$$

12) Law of corresponding states, reduced quantities

$$(P_r + \frac{3}{V_r^2})(V_r - \frac{1}{3}) = \frac{8}{3}T_r$$
; what is meaning?

- 1) What is first law of thermodynamics?
- 2) Reversible PV work = -∫Pdv maximum work?
- 3) Definition of C_p , C_v Relation C_p , C_v for ideal gas, liquid, solid
- 4) Enthalpy: H = U+PV $P=const: \Delta Q_P = \Delta H; V=const: \Delta Q_V = \Delta U$
- 5) Hess law Example in book: glucose \rightarrow maltose, $\Delta H=$?
- 6) Calculate ΔU , ΔH , Q for ideal gas processes, Isothermal, adiabatic, constant V,T; constant P,T

- 1) Second law of thermodynamics
- 2) Carnot cycle (engine)

Q, W, ΔU in each step; which step absorbs/releases heat?

$$\oint \frac{dQ_{rev}}{T} = 0; \oint \frac{dQ_{irr}}{T} < 0$$

- 3) Entropy: $dS = \frac{dQ_{rev}}{T}$
- 4) $\int_{A}^{B} \frac{dQ_{irr}}{T} = 0 \text{ for adiabatic process}$ $\Delta S > 0 \text{ for irreversible process}$
- 5) Calculate ΔS for phase changes
- 6) Calculate ΔS for ideal gas T, V changes
- 7) Calculate ΔS for mixing gases, solutions

$$\Delta S = -R (x_1 In x_1 + x_2 In x_2)$$

- 8) Third law of thermodynamics
- 9) Equilibrium conditions, what thermodynamic quantities characterize (determine) equilibrium under which conditions?
- 10) Direction of spontaneous process, when do the following conditions apply?

$$\Delta S > 0$$
, $\Delta G < 0$, $\Delta A < 0$

- 13) What is the practical equilibrium constant in terms of pressure, concentration, mole fraction or activity?
- 14) Relationships between K_p and K_c , and between K_p and K_x ?
- 15) Relation between the standard-state ΔG and the thermodynamic equilibrium constants?
- 16) Do K_p and K_c K_x . and K_a depend on P, V, and T?
- 17) What is the definition of chemical potential?
- 18) What is Le Chatelier principle?
- 19) What is the direction of the shift in equilibrium upon a change in pressure and volume?
- 20) How does a reaction shift if one adds A or C after the equilibrium is established? Does ΔG change?
- 21) What does the degree of association mean for the above reaction?
- 22) Remember the van't Hoff equation in two forms: derivative with respect to dT and d(1/T).
- 23) What is the x axis and y axis in a van't Hoff plot? What is the slope? What is the intercept?
- 24) A way to shift the equilibrium is to couple the reaction of interest with a second one. To make an unfavorable reaction possible, what is the requirement for the second reaction?

Chapter 5+6

- 1) Definition for phase.
- 2) What is the number of phases in a) a gas mixture; b) an aqueous solution of NaCl, c) a metal alloy; d) a suspension of oil in water; e) an aqueous solution of NaCl and MgCl₂?
- 3) Number of components c: minimum number of species necessary to specify the composition of the system = number of species in the system minus the number of constraints.
- 4) Variance of the system (degrees of freedom) is the number of independent intensive variables for describing the system, such as temperature, pressure or concentration.
- 5) What is the phase rule?
- 6) Draw a phase diagram for water. Point out the co-existence curves (or phase boundaries) for liquid-solid; liquid-gas; gas-solid equilibriums; triple point and critical point.
- 7) What is the thermodynamic quantity that drives phase transition at constant pressure?
- 8) At triple point what is the thermodynamic quantity that is the same for all three phases?
- 9) What is Raoult's law (Chapter 5, p.196-199)?
- 10) Given a pressure-composition (P-x/y) diagram for a liquid mixture in equilibrium with vapor, what is the number of number of degree of freedom f in the liquid, vapor phase and the coexistence region?

- 11) Given a point in the diagram, read out the composition in the liquid and vapor phase.
- 12) Explain how isothermal distillation works. Which phase is removed during the distillation? Which component is left in the residual liquid?
- 13) How does the diagram change if the liquid mixture has positive or negative deviation from the ideal behavior?
- 14) When does one want to use the temperature-composition diagram to describe the liquid-vapor equilibrium? Which curve is the boiling point curve? What are the boiling points for the pure liquids? Which liquid is more volatile?
- 15) Explain fractional distillation. What kind of liquid mixtures can be separated using fractional distillation?
- 16) What kind of liquid mixtures can be separated using steam distillation?
- 17) What is an azeotrope?

- 1) Definition of the rate of a reaction, the rate of consumption for a reactant, and the rate of formation for a product.
- 2) What are elementary reactions? Definitions of the 0th, 1st and 2nd order reactions.
- 3) What is the rate constant or coefficient?
- 4) Rate equations for 0^{th} , 1^{st} and 2^{nd} order reactions.
- 5) What is a half-life? Half-life for 0th and 1st order reactions.
- 6) How to distinguish 0th and 1st order reactions based on kinetic data, such as the plots of [A] vs time, ln([A]0/[A]) vs time, ln[A] vs time?
- 7) K_c in terms of rate constants?
- 8) Relaxation methods to study very fast reactions (temperature jump)
- 9) Arrhenius equation, determine activation energy from measurements of rate constants, compare with Eyring equation.

- 1) Rate equations for consecutive reactions
- 2) Steady-state treatment
- 3) Rate constants and equilibrium constants
- 4) Enzyme catalysis; Michaelis-Menton model (equation)