CHEM	3423	001	Spring	2016	4
CILLE	JTLJ	OOI	JULING	2010	u

Name: ID:

KEY

Midterm Exam #2

Answer Sheet: (All problems are multiple choice. List the letter that corresponds to the correct answer. Maximum number of points you can get is 25 pts!)

Conceptual questions (each 1.0 pts):

- 2) 🔄
- 3)_E
- 4) D
- 5) 4
- 6) E
- 7) A
- 8)__*A*_
- 9) 4
- 10) *D*
- 11) 4
- 12)___*A*__
- 13)<u>/</u>2

Problems and Calculations (each 2.0 pts):

- 2)___*D*__
- 3) 4
- 4) =
- 5)___*___*_
- 6)__*B*__

Conceptual Questions:

e. Concentration cf. None of a) – e)

1.	Under constant temperature and constant volume conditions, a system is said to be in equilibrium when $ \begin{array}{l} a. \Delta G < 0 \\ b. \Delta G = 0 \\ c. \Delta S > 0 \\ d. \Delta S = 0 \\ \hline e. \Delta A = 0 \\ f. \Delta A < 0 \\ g. \text{None of a) - f) \\ \end{array} $
2.	For the chemical reaction, $2H \rightarrow H_2$, at constant pressure, is the entropy change a. $\Delta S = 0$ b. $\Delta S = \Delta H$ c. $\Delta S = \Delta U$ d. $\Delta S > 0$ e. $\Delta S < 0$ f. $\Delta S \rightarrow \infty$ for $T \rightarrow 0K$ g. None of a) – f)
3.	Is the change in the Gibbs energy for the above reaction a. $\Delta G = 0$ b. $\Delta G = \Delta H$ c. $\Delta G \neq \Delta G$ d. $\Delta G = \Delta S$ e. $\Delta G < 0$ f. $\Delta G > 0$ g. None of a) – f)
4.	How many different phases can at most co-exist in a two-component system? a. 1 b. 2 c. 3 d. 4 e. 5 f. none of a) - e)
5.	At triple point what is the thermodynamic quantity that is the same for each component in all three phases? (a) Chemical potential μ (b) Entropy S (c) Enthalpy H (d) Internal energy U

- **6.** Which of the following is correct for a completely immiscible 2-component solution?
 - a. Raoult's law applies
 - **b.** It is an ideal solution mixture
 - c. It's boiling point is that of the more volatile component
 - **d.** It has a higher boiling point than the individual components
 - It has a lower boiling point than the individual components
 - f. None of a) -e
- 7. Which statement is true for an ideal solution mixture of two components A and B?
 - (a) It does not form an azeotropic mixture
 - b. The liquid curve in the temperature-composition phase diagram is a straight line
 - **c.** The vapor curve in the temperature-composition phase diagram is a straight line
 - d. The vapor curve in the pressure-composition phase diagram is a straight line
 - e. Raoult's law does not apply
 - f. None of a) e)
- 8. The following reaction describes dissociation of chlorine into atoms: $Cl_2 \Leftrightarrow 2Cl$. If the volume is doubled, the degree of dissociation
 - (a.) increases
 - **b.** decreases
 - c. depending on temperature may or may not change
 - d. will oscillate
 - e. None of a) d)
- 9. When equilibrium is reached, the total Gibbs energy of the reactants and products
 - (a.) Is the same
 - **b.** Differs, but has the same sign
 - c. Differs in both value and sign
 - d. is both zero
 - e. adds up to zero
 - f. None of a) -e
- 10. A way to shift the equilibrium is to couple the reaction of interest with a second one. To make an unfavorable reaction possible, what is the requirement for the second reaction?
 - a. $\Delta G^{0}_{2} < \Delta G^{0}_{1}$
 - **b.** $\Delta G^{0}_{2} > \Delta G^{0}_{1}$
 - **c.** $\Delta G^{0}_{2} + \Delta G^{0}_{1} > 0$
 - $\mathbf{\vec{d}} \Delta G^{0_2} + \Delta G^{0_1} < 0$
 - **e.** $\Delta G^{0}_{2} * \Delta G^{0}_{1} > 0$
 - f. None of a) e)

11. In a van't Hoff plot $\ln K^0_p$ is plotted as a function of the inverse temperature 1/T. If ΔH^0 is independent of temperature one obtains a straight line. From slope and intercept one finds:

 $\overline{(a)}$ Slope: $-\Delta H^0/R$

- **b.** Slope: $-\Delta S^0/R$
- c. Intercept: $-\Delta H^0/R$
- **d.** Intercept: $-\Delta H^0/R \Delta S^0/R$
- **e.** Slope: $-\Delta H^0/R \Delta S^0/R$
- f. None of a) -e
- 12. Consider water above the critical temperature Tc. Which of the following statements is correct for this system?
 - (a.) Only one phase exists.
 - b. The number of possible phase depends on the pressure in the system
 - c. There will be a liquid vapor transition
 - d. None of a) -c)
- **13.** Determine the number of degrees of freedom for of an olive in a solution of water and alcohol.
 - **a.** 0
 - b. 1
 - **c** 2
 - **(a.**) 3
 - **e.** None of a) d)

Problems and Calculations:

- 1. In a 25-liter container, at 25°C, and assuming ideal gas behavior, A atoms and B atoms combine to give AB: $A(g) + B(g) \Leftrightarrow AB(g)$. Suppose, we put into the container 0.3 mol of A, 0.38 mol of B and 0.02 mol of AB. After reaching equilibrium, only 0.03 mol of A is left. Assuming a standard concentration of 0.5 mol/l, what is K_c ⁰?
 - a. 51.132
 - b. 109.85
 - c. 219.70
 - d. 313.86
 - e. 511.32
 - (f.) 1098.5
 - g. 2197.0
 - h. 313.86
 - i. 5113.2
 - i. none of a) i)

$$\Delta n_{A} = -0.27 \, \text{mol} = > \Delta n_{AB} = 0.27 \, \text{mol} > \Delta n_{B} = -0.27 \, \text{mol}$$

$$=> [A] = \frac{0.03 \, \text{mol}}{25 \, \text{g}} = 0.0012 \, \frac{\text{mol}}{e} => [A]^{\circ} = 0.0024$$

$$[B] = \frac{0.38 - 0.27 \, \text{mol}}{25 \, \text{g}} = 0.0044 \, \frac{\text{mol}}{e} => [B]^{\circ} = 0.0088$$

$$[AB] = \frac{0.02 + 0.27 \, \text{mol}}{25 \, \text{g}} = 0.0016 \, \frac{\text{mol}}{e} => [AB]^{\circ} = 0.0232$$

$$K_{\circ} = \frac{[AB]^{\circ}}{[A]^{\circ}[B]^{\circ}} = \frac{0.0232}{0.0024 \cdot 0.0083} = 1098.5$$

- 2. An ideal solution of 5 mol of A and 2 mol of B is at 330K in equilibrium with vapor. At this temperature, $P_A^* = 2.5$ bar and $P_B^* = 6.5$ bar. What is the mass percentage of A in the vapor phase? (molar Mass of A (B): $M_A = 30$ g/mol; $M_B = 180$ g/mol)
 - a. 83.6.%
 - b. 78.5%
 - c. 25.9%
 - (d) 13.8%
 - e. 10.4%
 - f. 7.85 %
 - g. 2.59 %
 - h. 1.38 %
 - i. 1.04 %
 - j. None of a) -i)

$$\frac{\chi_{A}}{\chi_{B}} = \frac{5}{2} = 2.5 \quad (in liquid) \qquad \frac{\chi_{A}}{\chi_{B}} = \frac{P_{A}}{P_{B}} = \frac{\chi_{A}}{\chi_{B}} \frac{P_{A}}{P_{B}} \quad (in vapor)$$

$$\frac{\chi_{A}}{\chi_{B}} = \frac{m_{A}/m_{A}}{m_{B}/m_{B}} = \frac{m_{A}}{m_{B}} = \frac{\chi_{A}}{\chi_{B}} \frac{M_{A}}{M_{B}} = 2.5 \frac{P_{A}}{P_{B}} \frac{M_{A}}{M_{B}}$$

$$= 2.5 \cdot \frac{2.5}{6.5} \cdot \frac{30}{180}$$
$$= 6.16$$

$$m_{A} = \frac{m_{A}}{m_{A} + m_{B}} = \frac{0.16}{1.16} = 0.138$$

- 3. In an experiment, the vapor pressure of a liquid is measured as 4 kPa at 280K, and as 140 kPa at 450 K. Calculate from these data the enthalpy of vaporization $\Delta_{\text{vap}}H$ of the liquid.
 - (a.) 21.91 kJ/mol
 - b. 21.57 kJ/mol
 - c. 10.63 kJ/mol
 - d. 3.171 kJ/mol
 - e. 2.191 kJ/mol
 - f. 1.063 kJ/mol
 - g. 317.1 J/mol
 - h. 219.1 J/mol
 - i. 106.3 J/mol
 - j. None of a) i)

$$\ln \frac{P_{c}}{P_{c}} = \frac{\Delta_{var}H}{R} \left(\frac{1}{T_{c}} - \frac{1}{T_{c}} \right) = \frac{\Delta_{var}H}{R} \frac{T_{c} - T_{c}}{T_{c} T_{c}}$$

$$= \sum \Delta_{var}H = R \ln \frac{P_{c}}{P_{c}} \frac{T_{c} T_{c}}{T_{c} - T_{c}}$$

$$= 8.3145 - 8n \left(\frac{140}{4} \right) \cdot \frac{286.450}{170} \frac{7}{mol}$$

$$= 8.3145 \cdot 8n 35 - 741.1763 \frac{7}{mol}$$

$$= 21.91 \frac{167}{mol}$$

- 4. The ratio of a component A to that of water collected in a steam distillation is 6, when the mixture was boiled at 344 K and 80 kPa. If the vapor pressure of water at this temperature is 43.2 kPa, calculate the molar mass of A. (Molar mass of water: 18.02 g/mol)
 - a. 11.08 g/mol
 - b. 21.16 g/mol
 - c. 42.31 g/mol
 - d. 63.47 g/mol
 - e. 84.62 g/mol
 - (f.) 126.92 g/mol
 - g. 169.24 g/mol
 - h. 207.39 g/mol
 - i. 214.53 g/mol
 - j. none of a) i)

$$\frac{m_{A}}{m_{H_{2}}} = \frac{n_{A}/n_{A}}{n_{H_{2}}} = \frac{P_{A}^{*}}{P_{A}^{*}} = \frac{M_{A}}{M_{H_{2}}} = \frac{M_{A}}{M_{H_{2}}} = \frac{M_{A}}{M_{H_{2}}} = \frac{M_{A}}{M_{H_{2}}} = \frac{M_{A}}{M_{H_{2}}} = \frac{M_{A}}{M_{H_{2}}} = \frac{P_{A}^{*}}{M_{H_{2}}} = \frac{P_{A}^{*}}{M_$$

= 126.92 /mol

- 5. The Gibbs energies of formation of A(g) and B(g) are 100 kJ/mol and 50.5 k]/mol, respectively. The standard state is 2 bar and 300 K. Assume ideal behavior and a reaction $A \Leftrightarrow 2B$. Calculate the pressure where 30% of A is dissociated.
 - a. 0.178 bar
 - b. 0.312 bar
 - c. 0.503 bar
 - d. 0.734 bar
 - e. 0.893 bar
 - f. 0.953 bar
 - g. 1.134 bar
 - h. 1.693 bar

 - 3.386 bar
 none of a) i)

$$\Delta 6^{\circ} = 101 \, ||_{M01} - 100 \, ||_{M01} = 1 \, ||_{M01}$$

$$\Delta 6^{\circ} = -RT \, ln \, ||_{p}^{\circ} = > ln \, ||_{p}^{\circ} = \frac{\Delta 6^{\circ}}{RT} = \frac{-1000 \, 7 \, ||_{M01}}{3.3145} = \frac{-10}{3.3145} = \frac{-10}{3.3.3145} = -0.400 \, ||_{M01}$$

$$= > ||_{p}^{\circ} = 0.6697$$

$$A \iff 2B$$

$$P_A = \frac{1-x}{1+x}p$$

$$P_B = \frac{2x}{1+x}p$$

$$K_{p}^{0} = \frac{(2\alpha/(1+\alpha))^{2}}{(1-\alpha)^{2}(1+\alpha)} = \frac{4\alpha^{2}}{26ar} = \frac{p}{1-\alpha^{2}} = \frac{26ar}{26ar}$$

$$\alpha = 0.3 \Rightarrow p = \frac{0.91}{0.36} \cdot 0.6697.2697$$

- 6. For a certain chemical reaction under constant volume one finds a difference $\Delta U = -110$ kJ/mol in internal energy between products and reactants, and an entropy difference $\Delta S = -230$ J/(K mol). Assume that these two values do not depend on temperature. At what temperature will be the Helmholtz's energy difference $\Delta A = 0$?
 - a. 956.5K
 - (b.) 478.3 K
 - c. 239.1 K
 - d. 95.65 K
 - e. 47.83 K
 - f. 23.91 K
 - g. 0.9655 K
 - h. 0.4783 K
 - i. 0.2391 K
 - j. none of a) -i)

$$\Delta A = \Delta U - T \Delta S = 0$$

Useful Equations and Constants:

$$G = H - TS \qquad \Delta G = \Delta H - T\Delta S \quad \Delta S = n_1 R \ln \left(\frac{V_1 + V_2}{V_1} \right) + n_2 R \ln \left(\frac{V_1 + V_2}{V_2} \right)$$

$$A = U - TS$$

$$\Delta A = \Delta U - T \Delta S$$

$$\left(\frac{\partial U}{\partial V}\right)_T = -P + T \left(\frac{\partial P}{\partial T}\right)_V$$

$$\left(\frac{\partial H}{\partial P}\right)_T = V - T \left(\frac{\partial V}{\partial T}\right)_P$$

$$\left(\frac{\partial H}{\partial P}\right)_{T} = V - T \left(\frac{\partial V}{\partial T}\right)_{P} \qquad RT \ln \frac{f}{P} = \int_{0}^{P} \left(V_{m} - \frac{RT}{P'}\right) dP'$$

$$H = U + PV$$

$$\Delta H = \Delta U + \Delta (PV)$$

$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

$$\Delta G = \Delta G^0 + nRT \ln \frac{P}{P^0} \qquad K_P = \left(\frac{\cdots P_Y^y P_Z^z}{P_A^a P_B^b \cdots}\right)_{a} \qquad \Delta G^0 = -RT \ln K_P^0$$

$$K_P = \left(\frac{\cdots P_Y^y P_Z^z}{P_A^a P_B^b \cdots}\right)_B$$

$$\Delta G^0 = -RT \ln K_P^0$$

$$K_{C} = \left(\frac{\cdots [\mathbf{Y}]^{y} [\mathbf{Z}]^{z}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b} \cdots}\right)_{e_{G}}$$

$$K_{C} = \left(\frac{\cdots [\mathbf{Y}]^{y} [\mathbf{Z}]^{z}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b} \cdots}\right)_{eq} \qquad \Delta G = \Delta G^{0} + RT \ln \left(\frac{\cdots [\mathbf{Y}]^{y} [\mathbf{Z}]^{z}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b} \cdots}\right)^{u}$$

$$K_a = \left(\frac{\cdots a_{\rm Y}^y a_{\rm Z}^z}{a_{\rm A}^a a_{\rm B}^b \cdots}\right)_{ea}$$

$$K_P = K_C(RT)\Sigma^{\nu} \qquad K_P = K_x P^{\sum \nu}$$

$$K_P = K_x P^{\sum \nu}$$

$$\mu_{A} = \left(\frac{\partial G}{\partial n_{A}}\right)_{T.P.n_{0.Doc}} \qquad \frac{d \ln K_{P}^{o}}{dT} = \frac{\Delta H^{o}}{RT^{2}} \qquad \frac{d \ln K_{P}^{o}}{d(1/T)} = -\frac{\Delta H^{o}}{R}$$

$$\frac{d\ln K_P^{\circ}}{dT} = \frac{\Delta H^{\circ}}{RT^2}$$

$$\frac{d\ln K_p^0}{d(1/T)} = -\frac{\Delta H^0}{R}$$

$$\ln K_P^{\circ} = -\frac{\Delta H^{\circ}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\circ}}{R} \qquad \frac{d \ln K_C^{\circ}}{dT} = \frac{\Delta U^{\circ}}{RT^2} \qquad \frac{d \ln K_C^{\circ}}{d(1/T)} = -\frac{\Delta U^{\circ}}{R}$$

$$\frac{d\ln K_C^{\circ}}{dT} = \frac{\Delta U^{\circ}}{RT^2}$$

$$\frac{d\ln K_C^{\circ}}{d(1/T)} = -\frac{\Delta U^{\circ}}{R}$$

$$K_{overall} = \prod_{i} K_{i}$$

$$\Delta G_{overall} = \sum_{i} \Delta G_{i} \qquad f = c - p + 2$$

$$f = c - p + 2$$

$$P_i = P_i^* x_i$$

$$P_i = P_i^* x_i \qquad \frac{n_A}{n_B} = \frac{P_A^*}{P_B^*}$$

$$\frac{n_l}{n_v} = \frac{y_1 - x_T}{x_T - x_1}$$

$$\frac{dP}{PdT} = \frac{\Delta_{vap} H_m}{RT^2}$$

 $L = 6.022 \cdot 10^{23} \text{ mol}^{-1}, k_B = 1.381 \cdot 10^{-23} \text{ K}^{-1}, h = 6.626 \cdot 10^{-34} \text{ J S}$

 $R = 8.3145 \,\text{J K}^{-1} \,\text{mol}^{-1}$

1 atm = 101325 Pa = 1.01325 bar

1 bar = 100000 Pa

 $K_W = 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$